
www.connect-wit.ru88 CONNECT | № 9–10, 2025

Бизнес, технологии, управление |

С 2022 г. российский рынок

средств разработки програм-

много обеспечения столкнулся

с заметной трансформацией.

В 2022–2023 гг. многие еще

ориентировались на западные

продукты, рассчитывая, что ситу-

ация вернется к прежней. Однако

в 2024–2025 гг. стало ясно: им-

портозамещение уже не опция,

а стратегическая необходимость.

Параллельно возникли серьез-

ные риски использования зару-

бежных платформ: от внезапного

отказа в доступе и поддержке

до уязвимостей в цепочке поста-

вок, которые особенно ощутили

компании, работающие с критиче-

ской инфраструктурой.

В новой реальности россий-

ские команды и сообщество

разработчиков активизировались.

Стало понятно, что нужен пере-

ход от простого хостинга кода

к полноценным платформам

разработки с CI/CD, артефакт-

менеджментом и диктатом без-

опасности. В связи с этим эк-

сперты группы компании «Астра»

рассказали о ключевых трендах

и вызовах на рынке средств раз-

работки в России, а также отве-

тили на вопросы о том, почему

импортозамещение DevOps-ин-

струментов стало необходимо-

стью, и какие решения помогают

компаниям строить безопасные

и эффективные конвейеры по-

ставки ПО.

Безопасная

разработка:

мягкое регулирование

Разработка безопасного про-

граммного обеспечения (РБПО)

– комплекс мер, направленных

на предотвращение появле-

ния и устранение уязвимостей

программы. Цель – исключить

внутренние ошибки, которые

в процессе эксплуатации могут

привести к нерегламентиро-

ванному поведению. Вопросы

 РБПО регулируются, в частности,

 ГОСТом Р 56939–2024 «Защита

информации. Разработка безопа-

сного программного обеспечения.

Общие требования». По сути, это

локализованный аналог стандарта

Secure SDLC, причем не ярлык,

а проверяемая дисциплина: трас-

сируемость требований до тестов

и релизов, контроль изменений,

воспроизводимые сборки, управ-

ляемые зависимости, статус-чеки

на уязвимости и лицензии. Такой

подход становится предпосылкой

обновления критической инфра-

структуры: без него сложно прой-

ти аудит и сертификацию, обес-

печить предсказуемость релизов

и управляемость рисков.

Внедрению РБПО препятст-

вуют «приземленные» факторы.

Без жестких регуляторных тре-

бований мотивация «перелопа-

чивать» инструменты разработки

заметно ниже, чем, например,

импортозамещать клиентские

приложения или базовые офи-

сные стеки. Во многих органи-

зациях среды разработки стоят

последними в очереди на замену.

Отдельная проблема – массив

неатрибутированного ПО: исто-

рический код без корректных

лицензий, без аудита зависи-

мостей, без воспроизводимых

сборок. Час тая ошибка – начи-

нать с безо пасности, когда про-

цессы еще не формализованы

и не авто матизированы: сканеры

SAST/DAST закуплены, но их

эффективность невелика, потому

что проверки не встроены в по-

ток и не блокируют вредоносные

изменения.

Дискуссия о государственном

репозитории за прошедшие годы

тоже эволюционировала. Если

в 2022–2023 гг. она казалась от-

ветом на все вопросы, то сегодня

рынок имеет достаточное коли-

чество устойчивых коммерческих

площадок, и тема сместилась

к точечному регулированию.

Это единые правила безопасной

публикации и распространения

кода, процедуры реагирования

на уязвимости и запрещенный

контент, а также совместимость

с регуляторными требованиями.

От репозитория
к конвейеру:
современные средства разработки ПО –
требования, вызовы и решения

Максим КОЗЛОВ,
технический директор GitFlic, «Группа Астра»

№ 9–10, 2025 89

Слишком жесткое регулирование

может тормозить конкуренцию

и инновации, тогда как аккурат-

ные общие принципы, наоборот,

повысят качество и предска-

зуемость. В любом случае мы

остаемся вне политики и строго

работаем в правовом поле РФ:

соблюдаем требования регуля-

торов, оперативно реагируем

на законные запросы и строим

процессы так, чтобы пройти все

проверки.

Чего ждут

современные

разработчики

от средств

разработки

Современным командам не-

достаточно просто репозитория.

Нужна платформа, которая прев-

ращает коммиты в проверенные

артефакты и управляемые ре-

лизы, а затем в наблюдаемую

эксплуатацию. Поддержка стеков

должна быть широкой: Java/

JVM, Python, Go, C/C++, C#,

Kotlin, Rust, PHP, JavaScript/

TypeScript и др. Под «поддерж-

кой» мы понимаем не только

хранение кода, но и шаблоны

пайплайнов, зрелый артефакт-

менеджмент (реестры пакетов

и контейнеров), анализ зависи-

мостей и лицензий, сканирование

уязвимостей, детерминирован-

ные сборки, подпись и SBOM.

На практике в «узких местах»

часто оказываются артефакты:

популярные экосистемы покры-

ты «из коробки», для остальных

приходится дополнять платформу

внешними сервисами или писать

обвязку, особенно когда речь

об on-prem.

С точки зрения DevOps-инже-

неров ожидания прагматичные.

Им нужны полная автоматизация

CI/CD, интеграция с Kubernetes

и контейнеризацией, инфраструк-

тура как код (Terraform/Ansible),

секрет-менеджмент, единая на-

блюдаемость (метрики, логи,

трейсы) и алертинг по SLO/SLA.

Плюс соответствие международ-

ным практикам: DORA-метрики

(частота деплоев, lead time,

процент неудачных изменений,

MTTR), shiftleft-проверки, элемен-

ты безопасной цепочки поставки

(подпись артефактов, SBOM,

аттестации происхождения). Миг-

рация с западных систем должна

проходить безболезненно: пере-

нос репозиториев, задач, пользо-

вателей, пайплайнов, сопостав-

ление ролей и агентов, сопоста-

вимые API и вебхуки. В идеале

платформа становится единым

«источником правды» для разра-

ботчиков, QA, DevOps/SRE, служб

безопасности и менеджмента.

ИИ-ассистенты разработчи-

ка занимают в процессе свое

полезное, но вспомогательное

место. В продуктивной практике

они ускоряют рутину: генерацию

шаблонов (тестов, конфигураций,

начальных «скелетов» сервисов),

подготовку рефакторинговых

планов, навигацию по большому

коду и объяснение чужих фраг-

ментов. Однако они не заменяют

дисциплины конвейера, тестиро-

вания и ревью. Любые предло-

жения модели проходят через те

же quality gates (сборку, тесты,

линтеры, SAST/DAST, approvals),

что и «ручной» код. В организа-

циях с повышенными требовани-

ями к приватности и авторским

правам внедрение ИИ требует

явных архитектурных и юридиче-

ских оговорок: запрета на отправ-

ку исходников во внешние обла-

ка, selfhosted-моделей или прокси

с анонимизацией, четких поль-

зовательских политик (какой код

можно показывать ассистенту),

контроля лицензий и исключения

лицензионной контаминации (на-

пример не допускать генерации

фрагментов, явно совпадающих

с GPL-кодом). На практике это

оформляется через локальное

развертывание LLM, RAG-подход

с внутренними базами знаний

(политики, стандарты кодирова-

ния, архитектурные решения),

аудит логов подсказок, а также

интеграцию результатов ра-

боты ассистента в пайплайны

так, чтобы они были «первого

класса» артефактами процесса:

проверяемыми, версионируемыми

и атрибутированными.

Два подхода

к организации

платформ разработки

В индустрии ужились два по-

люса. Первый – фрагментиро-

ванный подход в стиле Atlassian,

когда предлагаются отдельные

продукты под разные функции:

задачник, документация, репози-

тории кода, CI/CD, артефакты.

Сильные стороны такого под-

хода – глубина каждого инстру-

мента и богатая экосистема пла-

гинов. Слабые – разорванность

процесса, сложные интеграция

и обновления, рост TCO и риски

на стыках. В российском контек-

сте добавляется фактор оконча-

ния поддержки Atlassian Server:

выбор между Data Center/Cloud

и альтернативами требует се-

рьезных усилий и бюджета, осо-

бенно в сценариях on-prem.

Второй подход – интегрирован-

ная платформа, где GitLab стал

де-факто стандартом конвейера

разработки: репозитории, merge-

процессы, CI/CD, артефакты,

безо пасность и управление про-

ектами идут в одном потоке. Ры-

нок постепенно голосует за интег-

рацию: скорость внедрения выше,

наблюдаемость лучше, контроль

качества и безопасность встроен-

ные, а стоимость владения ниже,

особенно когда нужны on-prem

и «воздушные зазоры». В России

одна часть решений исторически

ближе к сборке из «кубиков»,

другая – к конвейеру как ядру.

Мы, разработчики GitFlic, осоз-

нанно развиваемся во втором

направлении: конвейер – сердце

платформы, все остальное – ло-

гичное продолжение этого потока.

Миграция с фрагментиро-

ванных связок в стиле Jira +

Bitbucket + Bamboo + Artifactory/

Nexus – это не только перенос

данных, но и шанс пересобрать

сам процесс. Практически успеш-

но работают сценарии, где мигра-

ция используется как точка входа

для внедрения DORA-метрик

(частота деплоев, lead time, доля

неудачных изменений, MTTR),

стандартизации стратегий ветвле-

ния, выстраивания единых quality

www.connect-wit.ru90 CONNECT | № 9–10, 2025

Бизнес, технологии, управление |

gates (обязательные тесты, ста-

тический анализ, пороги покры-

тия, approvals, политика Code

Owners), а также для построения

безопасной цепочки поставки

(SBOM, подпись и аттестация

артефактов, контроль лицензий).

Технически это означает подго-

товку организационных шаблонов

пайплайнов, унификацию чек-

листов ревью, настройку единых

ролей и политик веток, этапную

миграцию: сначала пилотные ко-

манды, затем распространение

паттернов на остальные. Важный

элемент – измеримость до/после:

фиксация базовых показателей

до миграции и контроль динамики

после нее позволяет не верить,

а видеть эффект в цифрах.

Проблема

фрагментированности

и ее влияние

на разработку

Фрагментированность почти

всегда влечет за собой лишнюю

ручную работу: интеграционные

шины, синхронизацию прав и ро-

лей, мониторинг на «стыках»,

сведение статусов из разных

систем. Отсюда типовые потери:

«зеленый» билд внезапно не вос-

производится в соседнем контуре,

артефакты теряют метаданные,

проверки дублируются или про-

тиворечат друг другу, а единый

ответ на простые вопросы –

что именно идет в продакшн,

из чего это собрано, кто согласо-

вал изменение – получить доволь-

но сложно. Это «тормозит» рели-

зы, мешает прогнозировать сроки

и повышает риск инцидентов.

Здесь хотелось бы привести

аналогию с производством, кон-

кретно – с автомобилестроением.

Один из всемирных лидеров ин-

дустрии компания Toyota испове-

дует подход, включающий такие

элементы, как непрерывный по-

ток, встроенное качество (jidoka)

и право останавливать линию

при дефекте (andon) – это про

связанный процесс с ответствен-

ными на каждом этапе. Разорван-

ные конвейеры, где брак «ловит-

ся» потом, неизбежно дороже:

в ИТ это превращается в позд-

ние «сюрпризы» перед релизом,

стресс и неустойчивые поставки.

Связанный конвейер снижает

вариативность, делает сроки

и качество предсказуемыми и пе-

реводит обсуждение из плоскости

героических ночных выкладок

в плоскость управляемых метрик

и дисциплины.

Безопасность

и качество

в современной

разработке

Безопасность и качество

в 2025-м – это не дополнение,

а свойства конвейера. SAST/

DAST, анализ зависимостей

и контейнеров работают «по-

настоящему» только в потоке:

проверки запускаются на каждый

merge request, в релизных ветках,

их статусы попадают в quality

gates и могут блокировать слия-

ние. Российские инструменты –

статический анализ от Positive

Technologies, «Ростелеком Со-

лар», решения ИСП РАН и дру-

гих ИБ-разработчиков уверенно

интегрируются в такие пайп-

лайны. Кроме того, сообщество

осваивает практики безопасной

цепочки поставки: SBOM (SPDX/

CycloneDX), подпись артефактов,

аттестации происхождения, при-

ватные реестры и репликации

для изолированных контуров.

Качество зиждется на ран-

них проверках и понятных

«воротах». Линтеры, стилевые

и архитектурные правила, юнит

и интеграционные тесты, покры-

тие, обязательные code review

и approvals – все это превраща-

ется в статус-чеки, без которых

MR «не сольется». Важна вос-

производимость: фиксированные

версии инструментов и зави-

симостей, детерминированные

сборки, изолированные раннеры,

одинаковые шаблоны пайплайнов

для команд. И правильная после-

довательность РБПО, когда сна-

чала формализуем процессы, за-

тем автоматизируем поток, потом

системно строим качество и уже

после усиливаем безопас ность.

Иначе инвестиции в сканеры

и аудиты растворяются в «руч-

ном хаосе».

Экономическая

эффективность

современных средств

разработки

Экономика DevOps – это

не про сокращение инженеров

конвейера, их и так мало, а их

миссия – стабильность и эволю-

ция линии, а не производствен-

ные нормы. Реальная экономия

появляется в производительности

разработчиков и снижении инци-

дентов: меньше циклов доработок

благодаря ранним проверкам,

меньше «пожаров» у заказчиков,

быстрее time-to-market и выше

пропускная способность команды.

Там, где конвейер выстроен, спор

«скорость против качества» исче-

зает: при правильных quality gates

они растут вместе.

Механика здесь понятная. Авто-

матизация рутины – от шаблонов

пайплайнов до автопубликации

артефактов – убирает «неви-

димую ручную работу». Shiftleft

радикально уменьшает стоимость

исправления дефектов: найден-

ный на первом этапе баг на поря-

док дешевле «позднего» и не по-

рождает «хвостов» в смежных

командах. Прозрачность по DORA-

метрикам позволяет заранее вы-

являть деградации, снижать MTTR

и аргументированно принимать

решения о релизах. По нашему

опыту внедрений, переход с «зо-

опарка» интеграций и ручных сты-

ков на интегрированный конвейер

дает кратный прирост скорости

для команд, которые прежде мно-

го времени тратили на синхрони-

зацию и согласования, и заметно

уменьшает дефекты в проде.

Экосистема

и интеграции

Индустрия смещается от то-

чечных интеграций к сквозным

платформам – от IDE до экс-

плуатации. В России появляют-

ся зрелые инициативы уровня

OpenIDE («Группа Астра», Axiom

№ 9–10, 2025 91

JDK, Haulmont), которые закры-

вают «точку входа» разработчика

и нативно встраиваются в общий

поток. Для сценариев on-prem

критично, чтобы все шаги – сбор-

ки, тесты, публикации и эксплуа-

тация – жили внутри периметра,

с локальной поддержкой и пол-

ным аудитом.

На уровне интеграций вырисо-

вывается обязательный минимум:

 �Тест-менеджмент (например

TestIT) для автоматизации и вос-

производимости сценариев;

 � инструменты безопасности для

кода, зависимостей, контейнеров

и лицензий как этапы пайплайна

и части quality gates;

 � системное управление кон-

тейнерами и эксплуатацией

(Kubernetes и, в частности, «Боц-

ман») как продолжение конвейе-

ра после сборки;

 � наблюдаемость: метрики, логи,

распределенные трейсы и алер-

ты по SLO;

 � публикация в корпоративных ка-

талогах и на маркетплейсах (на-

пример RuStore) с управлением

версиями и отзывами.

Платформенный подход означа-

ет, что все роли – разработчики,

QA, DevOps/SRE, безопас ность,

менеджмент – работают в одном

«источнике правды», а с партне-

рами выстраиваются глубокие,

стандартизованные интеграции

вместо единичных коннекторов.

GitLab в России: риски

зависимости от международного

стандарта

Сервис GitLab стал одним

из наиболее популярных конвейе-

ров благодаря интегрированности

и полноте. Он охватывает все

ключевые этапы от репозитория

до релиза, безопасности и управ-

ления с возможностью начать с

малого и масштабироваться, не

ломая парадигму. Эту модель

принимают и стартапы, и корпо-

рации: удобно, когда весь SDLC

живет в одном потоке и в одном

домене ответственности. Парал-

лельно GitLab расширяет зону

ответственности в сторону требо-

ваний и портфельного управле-

ния, что отражает тренд «меньше

систем – больше глубины».

В российских реалиях, одна-

ко, есть риски, которые нель-

зя не принимать во внимание:

сложности с легальным при-

обретением лицензий и полу-

чением поддержки, опасность

внезапного ограничения досту-

па и критическая зависимость

от зарубежной инфраструктуры:

аккаунтов, реестров, удостоверя-

ющих сервисов, что в контурах

с повышенными требованиями

к автономности превращается

в уязвимость. Для многих компа-

ний это не столько технический,

сколько юридический и опера-

ционный риски, которые трудно

закрыть договорами. Поэтому

местные команды обоснованно

смотрят на локальные альтер-

нативы, которые сохраняют

преимущества международного

стандарта процесса (парадигму

конвейера), но добавляют неза-

висимость: локальную поддержку,

соответствие требованиям РБПО

и интеграции с российской эко-

системой. Это позволяет стро-

ить процессы без компромиссов

в час ти безопасности с опорой

на практики, устоявшиеся в миро-

вом сообществе.

GitFlic в контексте современных

требований к разработке

По оценкам аналитиков, рынок

DevOps и автоматизации в стране

растет, отчеты говорят об устой-

чивом увеличении спроса на CI/

CD-решения. Важно отметить, что

сегодня в России шесть вендоров

развивают Git-подобные решения,

а комьюнити разработчиков все

активнее использует отечествен-

ные платформы, что само по се-

бе является маркером зрелости

рынка. Мы сознательно развива-

ем GitFlic как интегрированную

платформу: знакомые индустрии

парадигмы и интерфейсы, воз-

можность миграции с западных

систем и работы on-prem и в за-

мкнутых контурах. Наша цель –

чтобы разработка, тестирование,

безопасность и эксплуатация

складывались в единый воспро-

изводимый поток, где каждое

изменение прослеживается от за-

дачи до релиза, а артефакт –

от исходников и зависимостей

до подписи и SBOM. В этом

смысле GitFlic – не система,

в которой есть конвейер, а сам

конвейер разработки, вокруг

которого организована работа

команд. На уровне практик каче-

ства и безопасности мы исполь-

зуем «ворота» с обязательными

автоматическими проверками

(линтерами, тестами, статическим

и динамическим анализом, анали-

зом зависимостей и контейнеров,

лицензий) и человеческими согла-

сованиями: code review, approvals,

code owners, релизными ролями.

Результаты российских сканеров

безопасности включаются в quality

gates и реально влияют на допуск

изменений, артефакты подписы-

ваются, сопровождаются SBOM,

а доступы и действия прозрачно

аудируются. Для корпоративных

сценариев важны управление

доступом и аутентификацией

(SSO, LDAP/AD/SAML, 2FA), изо-

ляция сред, раздельные контуры

для «горячих» и «холодных»

веток, а также масштабирование

до кластеров с высокой доступно-

стью и репликациями.

Мы уделяем внимание миг-

рации: переносим репозитории,

задачи, артефакты и пайплайны,

настраиваем сопоставимость

ролей и агентов, сохраняем

привычную разработчикам па-

радигму. В экосистеме «Группы

Астра» соединяем Open IDE

как рабочее место разработчика,

GitFlic как конвейер и «Боцман»

как платформу эксплуатации

Kubernetes. В партнерстве

с TestIT реализуем тест-ме-

неджмент и автотесты, вместе

с TeamStorm – управление про-

ектами, сотрудничаем с россий-

скими вендорами ИБ-решений.

В результате выстраивается

сквозной цикл: от нажатия кла-

виш в IDE до наблюдаемой экс-

плуатации у заказчика – с еди-

ным «источником истины» или

данных, воспроизводимостью

и управляемыми рисками. Наша

задача – не замещать ради за-

мещения, а дать командам про-

мышленный инструмент, соответ-

ствующий международным стан-

дартам процесса и требованиям

локальной регуляторики.

	088

